


Hardware-Accelerated Image Co-Processor Reference Design

OVERVIEW

- Hardware video processing, up to a tera operations per second (1012), FPGA/HDL based
- User accessible image processing framework environment to speed-up algorithm portage
- Nexvision's image pre-processing advanced algorithm library
- Nexvision's technical support for MATLAB or C to HDL coding optimization

IP SAMPLES

- Deconvolution
- Fusion of multiple shoot
- Optical enhancement and corrections
- Vibration stabilisation
- Compression/decompression
- Human body detection
- Shape, character recognition
- Traffic accident detection, behaviour & flow control
- Depth map
- 3D scene reconstruction

REFERENCE DESIGN PROCESS

Order a Nexvision Reference Design

2 Update your Specifications

Get your product Ready to sell

Features

- * High performance FPGA (Field Programmable Gate Array), based on latest 28nm process, low power
- * Ultrafast & High resolution frame grabbing and processing 12Mpixel@180fps
- * Low Size, Weight and Power (SWaP)
- * Support up to 4 independent video sensor boards

Applications

- · Opto-electronics devices
- Multimedia processing
- Gvrostabilised video (broadcast, defense) on UAV
- · Vision based vehicle guidance system or driver augmented reality
- · Multispectral video boarder surveillance
- Multitarget video tracking
- · Night vision, 3D range gating active imaging
- Blind Deconvolution
- Crypto accelerator
- Printed board, circuit board and LCD inspection
- · Cinema video camera with real time effects
- · Video post-production processing
- Automated license plate recognition (ANPR)
- · High end digital signage or real time interactive showcase
- Compact low weight , low power consuming vision solutions
- Video camera with CPU intensive image processing (hand held smartcam)
- Multispectral / Immersive / Omnidirectional 360° camera (virtual speedome)
- Embedded video enhancement and image analysis,

indexing before compression & transmission

Market

- Vision
- Defense
- Medical image processing
- Transport
- High end video surveillance (boarders, urban, CCTV).
- Industrial process supervision and visual inspection
- · Law enforcement & forensic
- · High end multimedia
- High-Performance Computing (HPC)

Image & Video processing power

- Unprecedented video pixel-crunching abilities
- Highly parallelized/vectorial pixel processing
- Multicore Single-Instruction-Multiple-Data (SIMD) processing
- High bandwidth pixel-video random access streams on local FPGA SRAM & external QDR-SRAM
- High bandwidth pixel-video linear access streams on external DDR3-SDRAM
- Very low latency

HDL coding development environment

- Developer is free to focus on algorithm development and optimization (C/MATLAB/software/HDL coding only), as the hardware video architecture is already defined.
- · Reduced integration time
- Upgrade path for new features and performance enhancements

Memory

• 6 x banks DDR3 1066MHz

- DDR-SDRAM (high capacity, high speed) SRAM (high speed, low random read access latency)
- 2Gbits per bank, 16bits bus
- 2 x ODR III @ 600MHz
- 144Mb per bank, 18bits bus

Video Input/Output 30 pin FPC connectors

- 4 independant video sensor board, each up to 200Mpixel/s, 16 bits
- VIDEO OUTPUT 2 x 200Mhz 16 bits
- Free format: RAW bayer 10/12 bits, RGB422, ITU-BT1120, ...

Control and Data Input/Output

PCI Express x4 Interface

Power supply and physical dimensions

- Input: 5VDC, 20W max
- Processing Board: 93mm (L) x 60mm (l) x 8mm (h)
- Temperature : 0°C to 50°C (-40°C to +85°C optional)
- Humidity: 10 90% non condensing

Typical Processing Algorithms

IMAGE ENHANCEMENT

- Image sensor processing
 - · CFA Bayer pattern to RGB (demosaïcing), state of art non linear algorithms for very high quality color interpolation (*)
 - Auto exposure: fast adaptive for highly changing scene illumination conditions (*)
- Multi-exposure or multiresolution, on a frame by frame basis (*)
- Color matrix correction: dynamic, scene and illumination measurement based (*)
- Automatic white balance Application specific (*)
- Gamma conversion & YUV/HSI color conversion, histogram, logic, LUT mapping, segmentation, and thresholding (*)
- Dead pixel correction
- IR sensors non uniformity correction (*)
- Anti flickering (*)

Image shoot enhancement

- Dynamic local tone mapping (Shadows and highlights)
- High dynamic range (16bits resolution based)
- 3D noise Filter (spatial-temporal). (*)
- Contrasts and edges enhancement (algorithm type: USM unsharp mask) (*)
- Spatial filters

Deconvolution (*)

- Image reconstitution model which integrate bayer pattern and color aberration (*)
- Parallel algorithm on fpga which deconvolves the image using recursive algorithm which converge in few iterations. (new patent pending approach) (*)
- Process of Deconvolution which integrate the sensor's noise and which improve the denoising or the deblurring in function of user's goal (*)
- Myopic deconvolution to estimate the psf of optical and atmospherical aberration (based on fractal found in natural image) (*)
- Lens defocused mechanically to estimate the psf (*)
- Motion of camera could be integrated in deconvolution process (*)
- · Multi-channels deconvolution (*)
- Frequency domain transformation
- Multiple shoot and/or multi angle of view in multiple spectral band:
- visible, Shortwave InfraRed and Thermal InfraRed (MWIR/LWIR), Terahertz, etc...) - Fusion with non-linear co-registration warping algorithm that corrects for visible+VNIR+SWIR versus thermal IR parallax and optical distortions
- Autofocus : real time focus tracking with lens control loop (*)
- · Optical enhancement and corrections
- Optic's aberrations corrections and super-resolution (*)
- Atmospherical aberration correction (*)
- Lens distorsion correction
- Lens distorsion lateral and longitudinal chromatic aberrations,
- vignettage (relative illumination) correction
- Lens barrel distorsion distorsion correction - Ultra wide angle lens projection correction
- (360° « FishEye » circle image real time dewarping) (*)
- Co-optronics designed optics :
- extended depth of view/digital autofocus wave front coding
- Anisotropic 2D image scaling
- Vibration Correction Video stabilisation
 - Close control loop multilevel stabilisation depending on amplitude-period (mechanical, optical, electronic and software)
- Lens/mirror piezoactuator stabilisation control for angular movement correction (yaw and pitch)
- Piezo-microactuator image sensor micro-scanning stabilisation control (close loop with 6 axis gyro-accelero sensors Nexvision's "MULTILINK" board) (*)
- Motion compensation :
- virtual windows counter motion centring using feature points video tracking
- · Viewer pointed, automatic target tracking (gyrostabilized pan-tilt-zoom)
- · Virtual pan-tilt-zoom
- · Ultra high resolution video (X-HDTM) (*) with Nexvision IMA12MC
- · Multiple video sensors stitching to create panoramic images (*) with IMAPANO
- 360° high-resolution, real-time dewarp video (*)
- 2D/3D calibration
- ${\color{red} \bullet \, } Compression/decompression$
- Studio visual effects
- Back ground discrimination, correlation, gradient operation, Hough transformation, morphology, projection, edge thinning, line verification, rule based post processing, convolution, motion adaptive deinterlace, image restoration, etc...

• Motion detection (*)

Human body detection

• Shape, character recognition

Visitors/pedestrian counting

· Multi-modal gesture recognition

· User define algorithms

IMAGE ANALYSIS

- Feature points extraction and analysis · Fire detection
- Pattern matching
- Texture recognition
- Suspicious stationary object detection
- Content based retrieval & Query-by-content
- Sensors fusion (GIS positioning, accelero-gyro, ultrasound, radar, ..) • Multispectral band facial biometric recognition (Visible/SWIR/LWIR)
- Depth map
- · 3D scene reconstruction
- Registration unified scene alignment translation & scaled perspective
- Traffic accident detection, behaviour & flow control
- Color analysis
- 1D and 2D measurements
- 1D and 2D code reading and verification

(*) indicate NEXVISION'S image & video processing algorithm and image processing primitives library (hardware implemented IP)